Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(4)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37107286

RESUMO

Gut health includes normal intestinal physiology, complete intestinal epithelial barrier, efficient immune response, sustained inflammatory balance, healthy microbiota, high nutrient absorption efficiency, nutrient metabolism, and energy balance. One of the diseases that causes severe economic losses to farmers is necrotic enteritis, which occurs primarily in the gut and is associated with high mortality rate. Necrotic enteritis (NE) primarily damages the intestinal mucosa, thereby inducing intestinal inflammation and high immune response which diverts nutrients and energy needed for growth to response mediated effects. In the era of antibiotic ban, dietary interventions like microbial therapy (probiotics) to reduce inflammation, paracellular permeability, and promote gut homeostasis may be the best way to reduce broiler production losses. The current review highlights the severity effects of NE; intestinal inflammation, gut lesions, alteration of gut microbiota balance, cell apoptosis, reduced growth performance, and death. These negative effects are consequences of; disrupted intestinal barrier function and villi development, altered expression of tight junction proteins and protein structure, increased translocation of endotoxins and excessive stimulation of proinflammatory cytokines. We further explored the mechanisms by which probiotics mitigate NE challenge and restore the gut integrity of birds under disease stress; synthesis of metabolites and bacteriocins, competitive exclusion of pathogens, upregulation of tight junction proteins and adhesion molecules, increased secretion of intestinal secretory immunoglobulins and enzymes, reduction in pro-inflammatory cytokines and immune response and the increased production of anti-inflammatory cytokines and immune boost via the modulation of the TLR/NF-ĸ pathway. Furthermore, increased beneficial microbes in the gut microbiome improve nutrient utilization, host immunity, and energy metabolism. Probiotics along with biosecurity measures could mitigate the adverse effects of NE in broiler production.

2.
Int J Biol Macromol ; 236: 123855, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36868337

RESUMO

Conventional cancer management relies on tumor type and stage for diagnosis and treatment, which leads to recurrence and metastasis and death in young women. Early detection of proteins in the serum aids diagnosis, progression, and clinical outcomes, possibly improving survival rate of breast cancer patients. In this review, we provided an insight into the influence of aberrant glycosylation on breast cancer development and progression. Examined literatures revealed that mechanisms underlying glycosylation moieties alteration could enhance early detection, monitoring, and therapeutic efficacy in breast cancer patients. This would serve as a guide for the development of new serum biomarkers with higher sensitivity and specificity, providing possible serological biomarkers for breast cancer diagnosis, progression, and treatment.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Glicosilação , Detecção Precoce de Câncer , Biomarcadores/metabolismo , Glicoproteínas/metabolismo , Biomarcadores Tumorais/metabolismo , Polissacarídeos
3.
Front Microbiol ; 14: 1125897, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910205

RESUMO

The present study was conducted to evaluate the effects of Clostridium butyricum (CB) and fructooligosaccharide (FOS) singly or combined, on performance, egg quality, amino acid digestibility, jejunal morphology, immune function and antioxidant capacity in peak-phase laying hens. A total of 288 Hy-Line Brown laying hens (30 weeks of age) were randomly assigned to 4 dietary groups that included basal diet, basal diet +0.02% of CB (zlc-17: 1 × 109 CFU/g) (PRO), basal diet +0.6% FOS (PRE), and basal diet +0.02% CB + 0.6% FOS (SYN) for 12 weeks. Each treatment had 6 replicates with 12 birds each. The results demonstrated that probiotics (PRO), prebiotics (PRE) and synbiotics (SYN) (p ≤ 0.05), respectively, exerted a positive effect on the performance and physiological response of the birds. There were significant increases in egg production rate, egg weight, egg mass, daily feed intake and reduced number of damaged eggs. and zero mortality rate due to dietary PRO, PRE and SYN (p ≤ 0.05) respectively. Also, feed conversion was improved by PRO (p ≤ 0.05). In addition, egg quality assessment showed that; eggshell quality was increased by PRO (p ≤ 0.05) and albumen indices (Haugh unit, thick albumen content, and albumen height) were enhanced by PRO, PRE and SYN (p ≤ 0.05). Further analysis showed that PRO, PRE and SYN (p ≤ 0.05), reduced heterophil to lymphocyte ratio, increased antioxidant enzymes and immunoglobulin concentration. Although spleen index was higher for PRO (p ≤ 0.05) group. The significant increase in villi height, villi width, villi height to crypt depth ratio and reduced crypt depth were obvious for PRO, PRE, and SYN (p ≤ 0.05). Furthermore, improved nutrient absorption and retention evidenced by increased digestibility of crude protein and amino acids, were notable for PRO, PRE, and SYN (p ≤ 0.05) group. Collectively, our findings revealed that dietary CB and FOS alone, or combined, enhanced productive performance, egg quality, amino acid digestibility, jejunal morphology, and physiological response in peak-phase laying hens. Our results would provide direction on nutritional strategies for gut enhancers and better physiological response of peak laying hens.

4.
Foods ; 11(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36553769

RESUMO

The focus of this study was to compare the yolk flavor of eggs from laying hens of Chinese indigenous and commercial, based on detection of volatile compounds, fatty acids, and texture characteristics determination, using sensory evaluation, artificial sensors (electronic nose (E-nose), electronic tongue (E-tongue)), and gas chromatography-mass spectrometry (GC-MS). A total of 405 laying hens (Hy-Line Brown (n = 135), Xueyu White (n = 135), and Xinyang Blue (n = 135)) were used for the study, and 540 eggs (180 per breed) were collected within 48 h of being laid and used for sensory evaluation and the instrument detection of yolk flavor. Our research findings demonstrated significant breed differences for sensory attributes of egg yolk, based on sensory evaluation and instrument detection. The milky flavor, moisture, and compactness scores (p < 0.05) of egg yolk from Xueyu White and Xinyang Blue were significantly higher than that of Hy-Line Brown. The aroma preference scores of Xinyang Blue (p < 0.05) were significantly higher, compared to Hy-Line Brown and Xueyu White. The sensor responses of WIW and W2W from E-nose and STS from E-tongue analysis were significantly higher foe egg yolks of Hy-Line Brown (p < 0.05), compared to that of Xueyu White and Xinyang Blue. Additionally, the sensor responses of umami from E-tongue analysis, was significantly higher for egg yolks of Xueyu White (p < 0.05), compared to that of Hy-Line Brown and Xinyang Blue. Besides, the contents of alcohol and fatty acids, such as palmitic acid, oleic acid, and arachidonic acid, in egg yolk were positively correlated with egg flavor. The texture analyzer showed that springiness, gumminess, and hardness of Hy-Line Brown and Xueyu White (p < 0.05) were significantly higher, compared to Xinyang Blue. The above findings demonstrate that the egg yolk from Chinese indigenous strain had better milky flavor, moisture, and compactness, as well as better texture. The egg yolk flavors were mainly due to presence of alcohol and fatty acids, such as palmitic acid, oleic acid, and arachidonic acid, which would provide research direction on improvement in egg yolk flavor by nutrition. The current findings validate the strong correlation between the results of egg yolk flavor and texture, based on sensory evaluation, artificial sensors, and GC-MS. All these indicators would be beneficial for increased preference for egg yolk flavor by consumers and utilization by food processing industry, as well as a basis for the discrimination of eggs from different breeds of laying hens.

5.
Front Microbiol ; 13: 987241, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177461

RESUMO

This study focused on evaluating the influence of Clostridium butyricum and Brevibacillus strains on egg production, egg quality, immune response and antioxidant function, apparent fecal amino acid digestibility, and jejunal morphology when supplemented as probiotics in the diets of laying hens in the peak phase. A total of 288 healthy 30-week-old Hy-Line Brown laying hens were arbitrarily assigned to four dietary groups, which included control diet and control diet supplemented with 0.02% C. butyricum zlc-17, C. butyricum lwc-13, or Brevibacillus zlb-z1, for 84 days. The results showed that dietary C. butyricum and Brevibacillus sp. exerted a positively significant influence (P ≤ 0.05) compared to the control group on the performance, egg quality, and physiological response of the birds. The diets could reduce mortality rate and enhance (P ≤ 0.05) egg weight and egg mass, egg production rate, and feed efficiency. Further analysis suggested that the probiotic strains can enhance (P ≤ 0.05) eggshell quality, Haugh unit, thick albumen content, and albumen height. Also, probiotics enhanced (P ≤ 0.05) the antioxidant status via increased antioxidant enzymes and jejunal morphology as evidenced by increased villi surface area (VSA), the ratio of villi height to crypt depth, villi width, and villi height, and a significant reduction in crypt depth. Besides, nutrient absorption and retention were enhanced, as apparent fecal amino acid digestibility of key essential amino acids was substantially improved in the diet-based group. The concentrations of immunoglobulin M and A (IgM and IgA) increased significantly (P ≤ 0.05) in the probiotics group and the same effect was notable for complement proteins (C3) and immune organ (Spleen). Conclusively, the supplementation of Clostridium butyricum zlc-17 in comparison to Clostridium butyricum lwc-13 and Brevibacillus zlb-z1 strains significantly (P ≤ 0.05) promoted the antioxidant status, modulated the intestinal structure, enhanced amino acid digestibility, and regulated the immunity index of the laying hens, which finally improves the laying performance and egg quality of the laying hens.

6.
Foods ; 11(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35804644

RESUMO

The focus of this study was to investigate the influence of prebiotics, such as fructooligosaccharides (FOS), on laying performance, egg quality, apparent fecal amino acid digestibility, jejunal morphology, hematological indices, immunological response, and antioxidant capacity in laying hens. A total of 216 healthy Hy-Line Brown laying hens aged 30 weeks were randomly assigned to one of three dietary treatments: basal diet, basal diet supplemented with 0.3 percent FOS, or 0.6 percent FOS. For 84 days, each treatment was fed the corresponding experimental diet. According to the findings, dietary supplementation with FOS enhanced laying performance and egg mass while lowering mortality rate. Albumen height, thick albumen content, Haugh unit, and eggshell thickness were also improved by the prebiotics. Prebiotics also boosted antioxidant status by increasing the activity of antioxidant enzymes, improved morphological development of the jejunum as demonstrated by significant increases in villi height, villi width, ratio of villi height to crypt depth, and reduced crypt depth. The prebiotics group showed a considerable increase in immunoglobulin M, G, and A (IgM, IgG, and IgA) levels, as well as a similar effect on complement proteins (C3). Furthermore, the apparent fecal amino acid digestibility of most essential amino acids was significantly enhanced. Conclusively, fructooligosaccharides at inclusion level of 0.6% efficiently enhanced laying performance and production of high-quality eggs while positively modulating amino acid digestibility, jejunal morphology, antioxidant status, and immune functions of the laying hens.

7.
Front Nutr ; 9: 875270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757269

RESUMO

Albumen quality is recognized as one of the major yardsticks in measuring egg quality. The elasticity of thick albumen, a strong bond in the ovomucin-lysozyme complex, and excellent biological properties are indicators of high-quality albumen. The albumen quality prior to egg storage contribute to enhance egg's shelf life and economic value. Evidence suggests that albumen quality can deteriorate due to changes in albumen structure, such as the degradation of ß-ovomucin subunit and O-glyosidic bonds, the collapse of the ovomucin-lysozyme complex, and a decrease in albumen protein-protein interaction. Using organic minerals, natural plants and animal products with antioxidant and antimicrobial properties, high biological value, no residue effect and toxicity risk could improve albumen quality. These natural products (e.g., tea polyphenols, marigold extract, magnolol, essential oils, Upro (small peptide), yeast cell wall, Bacillus species, a purified amino acid from animal blood, and pumpkin seed meal) are bio-fortified into eggs, thus enhancing the biological and technological function of the albumen. Multiple strategies to meeting laying hens' metabolic requirements and improvement in albumen quality are described in this review, including the use of amino acids, vitamins, minerals, essential oils, prebiotics, probiotics, organic trace elements, and phytogenic as feed additives. From this analysis, natural products can improve animal health and consequently albumen quality. Future research should focus on effects of these natural products in extending shelf life of the albumen during storage and at different storage conditions. Research in that direction may provide insight into albumen quality and its biological value in fresh and stored eggs.

8.
Antioxidants (Basel) ; 11(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35453315

RESUMO

Enhanced albumen quality is reflected in increased thick albumen height, albumen weight, and Haugh unit value, while the antimicrobial, antioxidant, foaming, gelling, viscosity, and elasticity attributes are retained. Improved albumen quality is of benefit to consumers and to the food and health industries. Egg quality often declines during storage because eggs are highly perishable products and are most often not consumed immediately after oviposition. This review provides insights into albumen quality in terms of changes in albumen structure during storage, the influence of storage time and temperature, and the mitigation effects of natural dietary antioxidants of plant origin. During storage, albumen undergoes various physiochemical changes: loss of moisture and gaseous products through the shell pores and breakdown of carbonic acid, which induces albumen pH increases. High albumen pH acts as a catalyst for structural changes in albumen, including degradation of the ß-ovomucin subunit and O-glycosidic bonds, collapse of the ovomucin-lysozyme complex, and decline in albumen protein-protein interactions. These culminate in declined albumen quality, characterized by the loss of albumen proteins, such as ovomucin, destabilized foaming and gelling capacity, decreased antimicrobial activity, albumen liquefaction, and reduced viscosity and elasticity. These changes and rates of albumen decline are more conspicuous at ambient temperature compared to low temperatures. Thus, albumen of poor quality due to the loss of functional and biological properties cannot be harnessed as a functional food, as an ingredient in food processing industries, and for its active compounds for drug creation in the health industry. The use of refrigerators, coatings, and thermal and non-thermal treatments to preserve albumen quality during storage are limited by huge financial costs, the skilled operations required, environmental pollution, and residue and toxicity effects. Nutritional interventions, including supplementation with natural antioxidants of plant origin in the diets of laying hens, have a promising potential as natural shelf-life extenders. Since they are safe, without residue effects, the bioactive compounds could be transferred to the egg. Natural antioxidants of plant origin have been found to increase albumen radical scavenging activity, increase the total antioxidant capacity of albumen, reduce the protein carbonyl and malondialdehyde (MDA) content of albumen, and prevent oxidative damage to the magnum, thereby eliminating the transfer of toxins to the egg. These products are targeted towards attenuating oxidative species and inhibiting or slowing down the rates of lipid and protein peroxidation, thereby enhancing egg quality and extending the shelf life of albumen.

9.
Front Nutr ; 8: 726770, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938756

RESUMO

Developing new sources of organic selenium (Se) has potential benefits for animal production and human nutrition via animal-based foods enriched with Se. The objective of this study was to evaluate the effects of Se-enriched insect protein (SEIP) in comparison with other sources, such as sodium selenite (SS) and selenium-enriched yeast (SEY), on performance, egg quality, selenium concentration in eggs, serum biochemical indices, immune capacity, and intestinal morphology of laying hens. Four hundred and fifty 24-week-old Hy-Line Brown laying hens with 94.0 ± 1.5% laying rate were randomly allocated to five groups with six replicates of 15 hens each. The control diet was prepared without adding exogenous selenium (calculated basal Se content of 0.08 mg/kg). The normal group was fed basal diets supplemented with 0.3 mg/kg of Se provided by sodium selenite. Three treatment groups (SS, SEY, and SEIP, respectively) were fed basal diets supplemented with 2 mg/kg of Se provided by sodium selenite, Se-enriched yeast, and SEIP, respectively. The feeding trial lasted for 12 weeks. Results revealed that dietary supplementation of 2 mg/kg of Se increased egg weight, decreased feed conversion ratio, and enhanced the antioxidant capacity of eggs in laying hens relative to the control group, whereas no significant differences were observed among SS, SEY, and SEIP treatment groups for the same. The organic source of Se provided by SEY or SEIP showed higher bio efficiency, as indicated by higher selenium content in eggs of SEY and SEIP compared with SS, although higher content was observed in SEY compared with SEIP. Also, the organic Se source significantly improved antioxidant capacity and immune functions of laying hens than the inorganic Se source. Diets supplemented with SEIP and SS significantly improved jejunal morphology of the laying hens compared with SEY, whereas SEIP was more effective than SEY to improve the oviduct health of laying hens. The results of this work evidently points the additive effect and nontoxicity of SEIP. Thus, SEIP could be used as another organic source of Se in the diet of laying hens and production of selenium-enriched eggs for humans.

10.
Front Vet Sci ; 8: 745565, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708103

RESUMO

In the context of increasing awareness on the dietary supplementation of organic selenium in commercial poultry production and ensuring safe egg production, the present study investigated the effects of selenium on the pharmacokinetics of the therapeutic use of florfenicol and enrofloxacin from perspectives of laying performance, selenium deposition in eggs, and drug residue in plasma, organs, and eggs. A 2 × 3 factorial arrangement with two kinds of drugs (florfenicol vs. enrofloxacin, 200 mg/kg) and three levels of dietary organic selenium SCIP (selenium conjugated to insect protein) (0, 2, and 5 mg/kg) was designed together with a blank control group. Healthy Hy-Line Brown laying hens (n = 252, 40-week-old and 90.0 ± 1.7% of egg production rate) were randomly allocated into one of seven treatments with six replicates and six hens per replicate. The experiment lasted for 42 days and consisted of three periods (adjusted stage, depositional stage, and eliminating stage) of 14 days each. These stages entail feeding of the laying hens with basal diets, addition of drugs and selenium synchronously into the diets, drug withdrawal from diet, and supply of selenium uninterruptedly in the diet. Egg production and feed intake were recorded on daily and weekly bases, respectively. The selenium content in egg yolk, egg white, and whole eggs and the drug residues in eggs, plasma, liver, kidney, and breast muscle were determined on days 2, 3, 5, 6, 7, 9, 11, and 14 of the depositional and eliminating stages. There was no significant difference (p > 0.05) in egg production among the dietary treatments, but feed intake decreased significantly (p < 0.05) in the drug treatment group compared to other groups. Dietary organic selenium decreased the residue of drugs in tissues and eggs, while the metabolism and deposition of selenium in laying hens were suppressed due to drug effects. The results of the present study are of significance to enrich the knowledge of the pharmacokinetics of florfenicol and enrofloxacin in laying hens and ensure the quality of poultry products.

11.
Foods ; 10(6)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071289

RESUMO

The current experiment was conducted to investigate the application effects of selenium conjugated to insect protein (SCIP) in the production of selenium-enriched eggs. A total of 450 laying hens were randomly assigned to five dietary groups, each group consisting of six replicates. Hens in the control group received a diet without selenium supplementation, whereas hens in the other four groups received diets supplemented with either 1, 2, 5, or 10 mg/kg of selenium from SCIP. The productive performance, egg quality, antioxidant and immune capacity, biochemical indices, intestinal morphology, and oviduct health of laying hens were evaluated. The results showed that the supplementation of organic selenium provided by SCIP in the diets of laying hens enhanced performance and egg quality without any toxicity effect, even at the 10 mg/kg inclusion level. A level of 2 mg/kg of selenium provided by SCIP in diets tentatively improved the serum antioxidant and immune capacity, intestinal development, and oviduct health of laying hens in a conspicuous manner. Hence, the biosafety and positive effects of SCIP as a feed additive supplement in laying hens' diet have been demonstrated with the enhanced production of safe and selenium-enriched eggs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA